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Abstract. We examine the Wilson confining-area behavior for QCD(SU(∞)) as described by a Witten
effective reduced dynamics of constant-gauge fields. We show the model to be exactly soluble when dynamical
quark fields are added, together with fermion asymptotic freedom behavior. Additionally, we give arguments
for the triviality of the chiral-SU(N) non-abelian Thirring model at the t´Hooft limit of large number of
colors N → ∞ in the context of these constant-gauge-field reduced dynamics.

1 Introduction

Since 1950, the quantum field theory of light and electrons
(QED) has been a highly consistent framework for the de-
scription of the interaction of light and charged matter.
In 1967, this quantum field theory of particles achieved
another success with the advent of the Weinberg-Salam
quantum field theory, which successfully handled the weak-
electromagnetic component of the nuclear scattering pro-
cesses.

These quantum field methods are based on a princi-
ple of minimal action with (local and global) symmetries
and the existence of a mathematical generating functional
(Schwinger) defined on the space of classical source fields
(test functions in the language of Schwart distribution the-
ory). This generating functional in turn contains all the
probabilities for occurrences associated with all the phys-
ically possible quantum scatterings involving the elemen-
tary particle-field excitations.

However, until now it has been a difficult challenge to
apply these scattering quantum-field (LSZ) methods di-
rectly to the description of pure strong-nuclear interaction
such as a particle-field theory based on the framework of
the non-abelian gauge theory of quantum chromodynamics
(QCD). The basic and conceptual difficulty in applying the
LSZ quantum-field method to quantum chromodynamics
is rooted in the first assumption of the QCD model: charge-
color confinement; all QCD particles must be subject to
this, which in turn constrains particles with only a color-
singlet compound structure to be subject to physical LSZ
scattering processes.

It is important to remark that strong mathematical
clues for this QCD charge-color confinement were obtained
by Wilson (1974) in a discretized spacetime by using as
dynamical variables the well-known gauge-invariant dis-
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cretized Mandelstam-Feynman phase factors instead of the
gauge-variant discretized fields. Although there is a strong
indication that it is possible to remove the difficulties of the
direct use of a discrete spacetime through a second-order
phase transition leading to a zero lattice-spacing limit, this
step remains a somewhat unsolved problem within Wilson’s
program for QCD to the present day.

The purpose of this paper is to consider another quan-
tum Yang-Mills reduced model with an explicitly confining
behavior at the limit of large number of charge-colours (the
t’Hooft limit), but which is defined on a continuum space-
time. This reduced quantum-dynamical model is defined
by introducing directly on Rν , a functional manifold of
constant-gauge-field configurations [1], which in turn are
expected to generate an effective dynamics on the man-
ifold of the full gauge-field configurations at the t’Hooft
limit SU(∞) for the Yang-Mills path integral. We show the
Wilson confining-area behavior for QCD(SU(∞)) as de-
scribed by our proposedSU(∞) effective reduced dynamics
of constant-gauge fields. We show the exact solubility of our
SU(∞) model with the addition of full dynamical quark
fields and the related fermionic field asymptotic freedom.
These studies are presented in Sect. 3 of this paper.

Another interesting and conceptually important prob-
lem in quantum field theory is to understand the triviality
of quantum field theories as a phase-transition phenomena
depending on external parameters, including the famous
spacetime dimensionality.

It is argued sometimes that there are no non-renormal-
izable quantum field theories. What is really happening is
the appearance of the quantum field theory triviality phe-
nomena. However, there is some analysis in the literature
pointing out that through resummations – especially by
means of the large-N expansions – one couldmake suchnon-
renormalizable Field theories (such as the Thirring fermion
quantum field model) turn out to be nontrivial renormaliz-
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able ones. We aim in Sect. 3 to present an analysis, based on
an approximate chiral path-integral bosonization and the
Witten reduced constant-gauge-field dynamics of Sect. 2, to
show that such resummation renormalization phenomenon
does not happen. In Sect. 4 we complement our previous
path-integral analysis by presenting a triviality argument
by means of a loop space analysis for any N .

2 The model and its confining behavior

One of the basic quantum field variables used to probe the
nonperturbative phase of non-abelian gauge field theories
is the well-known (Euclidean) path-integral average associ-
ated with the non-abelian Faraday flux defined by a space-
time loop C: the so-called Wilson-Mandelstam loop vari-
able

W [C] =
1

W (0)

{∫
S′(Rν×SU(N))

DF [Aµ(x)]

× exp
(
− 1

2

∫
Rν

Tr(Fµν)2(x)dνx

)

×
(

1
N

Tr P

[
exp
(
ig

∮
C

Aµ dxµ

)])}
(1)

where the domain of the quantum average of (1) is com-
posed of Schwartz-temperedSU(N)-valued connections as-
sociated with the bundle Rν × SU(N).

A long time ago [1], it was argued by E. Witten that.
at the limit of an infinite number of colors N → ∞ with
the diagrammatic restriction lim

N→∞
(g2N) = g2

∞ < ∞, the

full domain of the Yang-Mills functional integral (1) would
be expected to be reduced to a manifold of translation-
invariant constant-gauge fields. Let us, thus, define our re-
duced Yang-Mills model by considering from the beginning
only constant-gauge-field configurations on the functional
domain of (1) as our basic assumption.

We now show the usefulness of such effective dynamics
bygiving aproof of the color-charge confinement throughan
explicit evaluation of the Wilson-Mandelstam phase factor
at N →∞, an important result supporting the possibility
of the above reduction of degrees of freedom for Yang-Mills
theory at SU(∞), as first conjectured in [1].

The main idea behind making this path-integral eval-
uation for constant-gauge fields explicit is to consider the
(non-gauge-invariant) Cartan decomposition of each con-
stant gauge field Aµ in the path-integral average (1).

Aµ = Ba
µHa +Gb

µEb (2)

where the Cartan basis {Ha, Ea} of the SU(N) Lie algebra
have the following distinguished calculational properties [2]

a) For a, b = 1, 2, . . . , N − 1

[Ha, Hb]− = 0 . (3)

b) For b = ±1, . . . ,± N(N − 1)
2

[Ha, Eb]− = ra(b)Eb . (4)

c) For a = 1, 2, . . . ,
N(N − 1)

2

[Ea, E−a]− =
N−1∑
�=1

rc(a)Ha . (5)

d) For a �= −b; a, b = ±1, . . . ,± N(N − 1)
2

[Ea, Eb]− = NabEa+b . (6)

Since one has to fix the gauge on the path-integral (1)
and at the same time one should preserve the non-abelian
nature of the field variable, which is expected to be dynam-
ically significant to explain charge confinement, we impose
that the abelian components should vanish as our gauge-
fixing condition (the Bollini-Giambiagi gauge, see the last
reference of [1]).

Ba
µ ≡ 0 . (7)

Note that the use of the gauge-fixing condition allows us
to simplify considerably the objects to be path-integrated
on our proposed SU(∞) constant-gauge-field model.

For instance, the constant-gauge-field Yang-Mills path-
integral weight is obtained by simply substituting (2) into
the Yang-Mills action, which leads to a pure fourth-order
polynomial action

S[Gb
µEb] =

1
2

∫
Ω

dνx
(
Tr(∂µAν − ∂νAµ + ig[Aµ, Aν ])2

)

= − g
2

2
· V Tr([Gµ, Gν ]2)

= − g
2

2
V Ga

µG
b
ν G

c
µG

d
ν [Labcd] . (8)

Here we have introduced an appropriate finite-volume
domain Ω ⊂ Rν such that vol(Ω) = V and with the topol-
ogy product formΩ = S×[0, �3]×[0, �4] to extract the area
behavior of (1) at the limit of large-area behavior S →∞
(infinite volume V ). The matrix of color indices Labcd is
given explicitly by (with Tr(EaEb) = +2δab)

Labcd =


N−1∑

i,�=1

ri(a)r�(c)δi� δc,−d δa,−b




+
(
NabNcd(1− δa,−b)(1− δc,−d)δa+b,−(c+d)

)
.
(9)

We have the following exact result for the Mandelstam
phase factor as a straightforward consequence of the non-
abelian Stokes theorem applied to the planar loopC, which
is supposed to be entirely contained in the plane (µ = 0,
ν = 1, (containing the Euclidean time axis) and S denotes
the area of the minimal surface bounded by C with the
disc topology (for a rigorous proof see Sect. 3).

P

{
e

ig
∮

C0,1
Aµ dxµ

}
= exp

(−g2S Tr[A0, A1]
)
. (10)

The leading limit of N → ∞ in (10) (similarly to the
deduction of the large-number law in statistics) yields the
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closed result below

1
N

Tr P

{
e

iS
∮

C0,1
Aµ dxµ

}

= exp
{

+
(g2S)2

2N
(Tr[A0, A1])2

}
+O

(
1
N

)

= exp
{

+
(g2S)2

2N
Ga

µG
b
ν G

c
µG

d
ν [Labcd]δµ0 δν1

}
. (11)

At this point of our path-integral study, let us make a
technical remark not used in what follows and related to the
fact that the path-integral average (1) for constant-gauge
fields is fullySU(N) gauge-invariant and, as a consequence,
one should in principle evaluate the Faddev-Papov Jaco-
bian associated with our proposed gauge-fixing (7). To im-
plement this technical step, one considers the infinitesimal
functional displacements through a gauge transformation
with parameters [δωa, δεb}

δ Aµ =

{(
δGb

µ

)
Eb + i (δωa)

(
Gb′

µ Eb′
)

(−ra (b′))

+ i
(
δεb
) [
Gb′

µ δb,−b′

(
N−1∑
�=1

r�(b)H�

)]

+ i
(
δεb
) [
Gb′

µ Nbb′ Eb+b′ (1− δb,−b′)
]}

, (12)

which after substituting in the functional metric [3],

δs2A = Tr
(∫

Ω

(δA · δA)dνx

)

= [δσ, δε, δω]T M [σ, ε, ω][δσ, δε, δω] , (13)

would lead us to the Faddev-Popov Jacobian as the func-
tional metric determinant averaged over the gauge group
(with the infinitesimal gauge group neighborhood implying
the use of the Feynman measure)

∆FP [Gµ] =
∫

SU(N)
DF (δε, δω) det

1
2 {M [σ̄, δε, δω]} .

(14)
However, it is expected that in the large N limit (14)

does not affect the confining area behavior of the averaged
Wilson loop equation (1). We thus neglect its contribution
to the average equation (1).

∆FP [Gµ] = 1 +O

(
1
N

)
. (15)

By collecting (8) and (11), one finally obtains our pro-
posed path-integral representation for the Wilson loop for
constant-gauge fields for large number of colors N → ∞.

W [C01]

= lim
N→∞


 1
W (0)

∫ N2−N∏
a=1

ν−1∏
µ=0

dGa
µ






× exp
{

+
1
2
Ga

µG
b
ν G

c
µG

d
ν Labcd

×
[
g2V + δµ0δν1

(
g2S
)2

N

]}
. (16)

Now the area behavior at the t’Hooft limit of large num-
ber of colors N →∞ is obtained exactly after considering
a simple rescaling of the Ga

µ variables in both path-integral
factors in (16) (including the normalization factor W (0)),

namely Ga
(0,1) → Ga

(0,1)

[
g2V +

(g2S)2

N

]− 1
4

in the numer-

ator and Ga
µ → Ga

µ[g2V ]−
1
4 in the denominator as well.

W [C] =

[
g2V

(
1 + g2S2)

NV

)]− (N2−N)ν
4

[g2V ]−(N2−N) ν
4

=
(

1 +
g2S2

NV

)− N(N−1)ν
4

(17)

which, in the large-N limit, gives us exactly the expected
exponential area behavior in a four-dimensional space time
of the cylindrical form Ω(∞) = R2 × [0, �3] × [0, �4], with
S →∞ (the area bounded by C).

W [C] ∼ expS→∞


−

(
lim

N→∞
(g2(N − 1))

)
(�3�4)S

· S2




∼ exp
{
−
(

g2
∞

(�3�4)

)
S

}
. (18)

It is very important to point out the appearance of a kind

of dual models-string slope parameter
g2

∞
(�3�4)

as an overall

coefficient in the area behavior equation (18), which signals
the existence of the phenomenon of dimensional transmuta-
tion on the adimensional SU(∞) gauge-coupling constant
in four-dimensional spacetime, a phenomena expected to
be responsible for the existence of strings structures on
QCD(SU(∞))as well as generating the expected mass scale
for hadrons in the observed nuclear particle forces [4]. Note
that the string tension on (18) depends solely on the area
vacuum cross section A = �3�4, as expected [4]. In the
three-dimensional case one obtains a pure length behavior
for the Wilson loop on the basis of (18).

Finally, in the two-dimensional case one obtains the area
behavior, however without the phenomenon of dimensional
transmutation for the N =∞ coupling constant [4].

After producing arguments for the confining behav-
ior in our reduced constant-gauge-field model through ex-
plicit evaluation, we now introduce full dynamical chiral
fermion fields in our proposed constant-gauge-field Yang-
Mills SU(∞) theory.

The associated quark-field-generating functional in the
presence of the background constant-gauge fields can be
explicitly evaluated.
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Let us briefly show this result since we make a complete
analysis of this problem in the next Sect. 3. Firstly we have
the following chiral quark-field Euclidean path integral

Z[η, η̄] =
1

Z(0, 0)

∫
DF [ψ(x)]DF [ψ̄(x)]δ(F )(γ5ψ − ψ)

× δ(F )(γ5ψ̄ − ψ̄)

× exp
{
− 1

2

∫
Ω

dνx(ψ, ψ̄)

×
[ © U(φ) �∂U(φ)
U(φ)∗ �∂∗U∗(φ) ©

](
ψ

ψ̄

)}

× exp
{
−i
∫

Ω

(ψ̄η + η̄ψ)dνx

}
(19)

where the chiral SU(N) phase U(φ) associated with the
constant-gauge fields configuration is given explicitly by
the expression

U(φ) = {exp [−ig γ5(Aa
α · xα)λa]}

= P

{
e−igγ5

∫ x
−∞ Aa

α·dxα
}

(20)

where φ = φaλa = Aa
α x

αλa is the chiral phase.
We can proceed as in the chiral bosonization path inte-

gral framework in order to “bosonize” (solve exactly) the
quark-field path-integral (19) by means of the chiral change
of variables [5]

ψ(x) = exp{−ig γ5 φ(x)}χ(x) ,

ψ̄(x) = χ(x) exp{−ig γ5 φ(x)} . (21)

After the change equation (21), the generating func-
tional takes the decoupled form

Z[η, η̄] =
1

Z(0, 0)

∫
DF [χ(x)]DF [χ̄(x)]

× exp
{
− 1

2

∫
Ω

dνx(χ, χ̄)(x)
[© �∂
�∂∗ ©

](
χ

χ̄

)
(x)
}

× exp
{
− i

2

∫
Ω

dνx

×
(
χ e−igγ5 φ(x)η + η̄ e−ig γ5 φ(x)χ

)
(x)
}

× det +1
F [U(φ) �∂U(φ)] . (22)

At this point, we remark the validity of the free-
field result for the fermionic functional determinant in the
path-integrand equation (22) (see the next section for de-
tailed calculations)

det F [U(φ) �∂U(φ)] = det F [�∂] . (23)

Here we have used the Alvarez-Romanov-Schwartz the-
orem [5], the condition

∫
Ω

dνx · xµ = 0 and the non-

existence of zero modes of the Dirac operator in presence of
constant gauge field configurations in order to obtain (23).

As a consequence of the above displayed results, one
gets the famous asymptotic freedom property of the quark
fields in ourSU(∞) constant gauge fieldmodel afterwriting
explicitly the quark two-point function

〈ψ(x)ψ̄(y)〉 =
δ2Z[η, η̄]
δη̄(x)δη(y)

∣∣∣∣
η=η=0

= 〈χ(x)χ(y)〉(0) exp
(
−ig γ5

∫ y

x

Aµ dxµ

)

∼
|x−y|→0

〈χ(x)χ(y)〉(0) . (24)

Here 〈χ(x)χ(y)〉 denotes the free fermion propagator
coming from the “bosonized” action and the contour on the
gauge field path-phase factor is a straight line connecting
the points xα and yα, which reduces to unity at the higher-
energy limit of |x− y| → 0 [see (20)].

At this point, let us call the reader’s attention to the
fact that phenomenon of asymptotic freedom should be
analyzed for gauge-invariant quark bilinear fields. For in-
stance, we have the gauge-invariant result:

〈(ψ(x)ψ̄(x))(ψ(y)ψ̄(y))〉
∼ 〈χ(x)χ̄(y)〉(0)〈χ(y)χ̄(x)〉(0)

×
{

TrSU(∞) P (+ig
∮

Cxy

Aµdxµ)

}
. (24b)

Here Cxy denotes an arbitrary planar closed contour
intercepting the marked points x and y. We can see that,
for large |x− y| separation, the above quark-bilinear field
correlation function approximates the free-field fermion
correlation functions as the family of planar loops Cxy in
the gauge-invariant expression (24)b reduces to a point as
the geometrical result of the superposition of the segments
of the straight line connecting the points x and y (see (24)),
however with opposite orientation. Note that all those loops
Cxy with a large area |x−y|2 make a negligible contribution
to (24)b.

3 The path-integral triviality argument
for the Thirring model at SU(∞)

We start our analysis by considering the chiral non-abelian
SU(Nc)ThirringmodelLagrangianon theEuclidean space-
time of finite volume Ω ⊂ R4, as in Sect. 2

L(ψ,ψ) =
1
2

[
ψ

a
(
i
−−−→
γµ∂µψ

a
)

+
(
ψ

a
i
←−−−
γµ∂µ

)
ψa
]

+
(
g2

2
(
ψbγ

µγ5 (λA
)
bc
ψc

)2)
. (25)

Here (ψa, ψ
a
) are the Euclidean four-dimensional chiral

fermion fields belonging to a fermionic fundamental rep-
resentation of the SU(Nc) non-abelian group with Dirich-
let boundary condition imposed at the finite-volume re-
gion Ω. In the framework of path integrals, the generat-
ing functional of the Green’s functions of the quantum
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field theory associated with the Lagrangian (25) is given
by (�∂ = i γµ∂µ)

Z[ηa, ηa]

=
1

Z(0, 0)

∫ N2−N∏
a=1

D[ψa]D[ψa]

× exp

{
− 1

2

∫
Ω

d4x
(
ψa, ψa

) [ 0 � ∂←−�∂ ∗ 0

](
ψa

ψa

)
(x)

}

× exp
{
− g

2

2

∫
Ω

d4x
(
ψbγ

5γµ (λA)bcψc

)2
(x)
}

× exp
{
−i
∫

Ω

d4x
(
ψa ηa + ηaψa

)
(x)
}
. (26)

To proceed with a bosonization analysis of the fermion
field theory described by this path integral, it appears
to be convenient to write the interaction Lagrangian in
a form closely parallel to the usual fermion-vector cou-
pling in gauge theories by making use of an auxiliary non-
abelian vector field Aa

µ(x), but with a purely imaginary
coupling with the axial vectorial fermion current (in the
Euclidean world).

Z[ηa, ηa]

=
1

Z(0, 0)

∫ N2−N∏
a=1

D[ψa(x)]D
[
ψa(x)

]

×
∫ N2−N∏

a=1

3∏
µ=0

D
[
Aa

µ(x)
]

× exp
{
− 1

2

∫
Ω

d4x(ψa, ψa)

×
[

0 �∂ + igγ5 �A
(�∂ + igγ5 �A)∗ 0

](
ψa

ψa

)
(x)
}

× exp
{
− 1

2

∫
Ω

d4x(Aa
µA

a
µ)(x)

}

× exp
{
−i
∫

Ω

d4x(ψa ηa + ηa ψa)(x)
}
. (27)

At this point of our analysis we present our idea to
bosonize (solve) exactly this fermion path integral. The
main point is to use the old suggestion that, for a strong cou-
pling and a large number of colors (the t’Hooft limit), one
should expect a great reduction of the (continuum) vector-
dynamical degrees of freedom to a manifold of constant-
gauge fields living on the infinite-dimensional Lie algebra
of SU(∞) [1,6]. In this t’Hooft limit of a large number of
colors, we can evaluate exactly the fermion path integral
by noting that the Dirac kinetic operator in the presence
of the constant SU(N) gauge fields can be written in the
following suitable form

exp
{
− 1

2

∫
Ω

d4x(ψaψa)
[

0 U(ϕ) �∂U(ϕ)
U(ϕ)∗ �∂∗U∗(ϕ)

]

×
(
ψa

ψa

)
(x)
}

(28)

where the chiral Hermitian phase-factor is given by

U(ϕ) = exp[−gγ5(Aa
µx

µ)λa] (29)

with the chiral SU(N)-valued phase defined by the con-
stant-gauge-field configuration

ϕ(xµ) = ϕaλa = (Aa
µx

µ)λa (30)

Note that, due to the attractive coupling of the axial
current-axial current interaction of ourThirringmodel (26),
the axial vector coupling is made of an imaginary complex
coupling constant ig.

Now we can follow exactly as in the well-known chiral
path-integral bosonization scheme [5,7] to solve the quark-
field path integral (28) exactly bymeans of the chiral change
of variables

ψ(x) = exp{−g γ5 ϕ(x)}χ(x) , (31)

ψ(x) = χ(x) exp{−g γ5 ϕ(x)} . (32)

After implementing the variable change from (31) to
(32), the fermion sector of the generating functional takes
the form where the independent Euclidean fermion fields
are decoupled from the interacting intermediating non-
abelian constant vector field Aa

µ, namely

Z[ηa, ηa]

=
1

Z(0, 0)

∫ N2−N∏
a=1

D[χa(x)]D[χa(x)]

×
∫ +∞

−∞

N2−N∏
a=1

d[Aa
µ]× exp

{
+
V

2
TrSU(N)

(
A2

µ

)}

× det+1
F [(�∂ + igγ5 �A)(�∂ + igγ5 �A)∗]

× exp
{
− 1

2

∫
Ω

d4x (χa, χa)
[

0 �∂
�∂∗ 0

](
χa

χa

)
(x)
}

× exp
{
−i
∫

Ω

d4x
(
χae

−gγ5ϕ(x)ηa + ηae
−gγ5ϕ(x)χa

)

× (x)
}
. (33)

Let us now evaluate exactly the fermionic functional de-
terminant of (33), which is given by the functional Jacobian
associatedwith the chiral fermion-field reparameterizations
in (31) and (32).

To compute this fermionic determinant, �n det+1
F [(�∂ +

ig �A)(� ∂ + ig �A)∗], we use the well-known theorem of
Schwarz-Romanov [7] by introducing a σ parameter (0 ≤
σ ≤ 1) dependent family of interpolating Dirac operators
(see (23) in Sect. 2).
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�D(σ) =
(
�∂ + ig �A(σ)

)
= exp{−g σγ5 ϕ(x)}(�∂) exp{−g σγ5ϕ(x)} . (34)

Since we have the relationship for the interpolating
Dirac operators

d
dσ
�D(σ) = (−gγ5ϕ) �D(σ)+ �D(σ)(−gγ5ϕ) (35)

and the usual proper-time definition for the functional de-
terminants under analysis

log det+1
F

(
�D(σ) �D(σ)∗)

= lim
ε→0+

∫ ∞

ε

ds

s
TrF

(
e−s( �D (σ) �D (σ)∗)

, (36)

one obtains straightforwardly the following differential
equation for the fermionic functional determinant

d
dσ

{
log det+1

F

(
�D(σ) �D(σ)∗)}

(37)

= 4 lim
ε→0

{∫
d4xTrF

[
gγ5ϕ× exp

(
−ε �D(σ) �D(σ)∗)]}

where TrF denotes the complete trace over the color, Dirac
and spacetime indices. At this point we note that the di-
agonal part of exp(−ε �D(σ) �D(σ)∗

) has a well-known gauge-
invariant asymptotic expansion in four-dimensions [4]
(where σµν = 1

2i (γ
µ γν − γν γµ))

exp
(
−ε �D(σ) �D(σ)∗)

=
1

4π2

{
1
ε2

+
1
ε
(F b

µν(σA)σµνλb)

+
1
4

(
− 1

3
F b

µν(σA)F b′
µν(σA)λbλb′

− 1
2
F c

αβ(σ A)F c′
α′β′(σA)λcλc′γαγβγα′

γβ′
)

+ 0(ε)
}
. (38)

After substituting the Seeley-Hadamard expansion into
(38), by taking into account (30), together with the fact
that TrDirac(γ5) = 0 and TrDirac(γ5 σ

µν) = 0, one obtains
finally the only possible non-zero term in our evaluations

W [Aa
µ] = 16

{(∫
Ω

d4x
(−g)
(4π)2

(
− 1

8

)
xµ

)
(39)

× (σAa
µ)(F c

αβ(σA)∗F c′
αβ(σA) TrSU(N)(λaλcλc′)) .

By supposing explicit spacetime symmetry of the finite-
volume region Ω, one has that the symmetry integral van-
ishes ∫

Ω

d4x · xµ ≡ 0 . (40)

As a consequence, we get the somewhat expected result
that the fermion functional determinant in the presence of

constant-gauge external fields coincides with the free one,
(see (23)) namely:

detF

[
(�∂ + ig �A)(�∂ + ig �A)∗

]/
detF

[
(�∂)(�∂)∗

]
= 1 . (41)

Let us return to our bosonized generating functional
(after substituting the above results into (33).)

Z[ηa, ηa]

=
1

Z(0, 0)

∫ N2−N∏
a=1

D[χa(x)]D[χa(x)]

×
∫ +∞

−∞

N2−N∏
a=1

d[Aa
µ] exp

{
+

1
2
V TrSU(N)(Aµ)2

}

× exp
{
− 1

2

∫
Ω

d4x(χa, χa)
[

0 �∂
�∂∗ 0

](
χa

χa

)
(x)
}

× exp
{
−i
∫

Ω

d4x (42)

×
(
χae

−gγ5(Aa
µλa)xµ

ηa + ηae
−gγ5(Aa

µλa)xµ

χa

)
(x)
}
.

Let us argue in favor of the theory’s triviality by an-
alyzing the long-distance behavior associated to theSU(N)
gauge-invariant fermionic composite operator B(x)
= ψa(x)ψa(x). It is straightforward to obtain its exact
expression from the bosonized path integral (42)〈

B(x)B(y)
〉

=
〈
(χa(x)χa(x))(χa(y)χa(y))

〉(0)
×G((x− y)) (43)

here the reduced model’s gluonic factor is given exactly in
its structural analytical form by the path integral (without
the γ5 Dirac indices)

G((x− y)) ∼ 1
G(0)

∫ +∞

−∞

N2−N∏
a=1

d[Aa
µ]

× exp
{

+
1
2

vol(Ω) TrSU(N)(Aµ)2
}

× TrSU(Nc) P


exp−g

∮
Cxy

Aαdxα


 (44)

where Cxy is a planar closed contour containing the points
x and y and possessing an area S given roughly by the
factor S = (x− y)2.

The notation 〈 〉(0) means that the fermionic average
is defined solely by the fermion free action as given in the
decoupled form (42).

Let us pass to the important step of evaluating the
Wilson phase-factor average in (44) at the t’Hooft limit
of a large number of colors N → ∞. As the first step to
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implement such evaluation, let us consider our loop Cxy as
a closed contour lying on the plane µ = 0, ν = 1 bounding
the planar region S (see Sect. 2)

We now observe that the ordered phase factor for con-
stant-gauge fields can be exactly evaluated by means of a
triangularization of the planar region S, i.e

S =
M⋃
l=1

∆(i)
µν . (45)

Here, each counterclockwise-oriented triangle �(i)
µν is

adjacent to the next one, and�(i)
µν ∩�(i+1)

µν is the common
side with the opposite orientations.

At this point we note that

P

{
e
−g
∫

∆
(i)
µν

Aα·dxα

}
∼= e−gAα·�(1)α · e−gAα·�(2)α · e−gAα·�(3)α

(46)
where {�(i)α }1=1,2,3 are the triangle sides satisfying the (vec-
tor) identity �(1)α + �

(2)
α + �

(3)
α ≡ 0.

Since we have that

P

{
e−g

∮
(x) Aαdxα

}
= lim

n→∞

n∏
i=1

P

{
e
−g
∫

∆
(i)
µν

Aαdxα

}
(47)

and by using the Campbell-Hausdorff formulae to sum the
product limit (47) withX and Y denoting general elements
of the SU(N) Lie algebra:

eX · eY = eX+Y + 1
2 [X,Y ] + 0(g2) (48)

one arrives at the non-abelian Stokes theorem for constant-
gauge fields (see second reference in [1]).

P

{
e
−g
∫

Cxy
Aαdxα

}
= P

{
e−g

∫∫
S

F01dσ01
}

= P

{
e+(g)2 [A0,A1]·S

}
. (49)

As a consequence, we have the following result (exact
at N →∞) to be used in our analysis below

TrSU(N) P

{
e
−g
∫

Cxy
Aαdxα

}

∼ exp
{

+
(g2S)2

2
(TrSU(N)[A0, A1])2

}

+O

(
1
N

)
. (50)

Note that (50) is a rigorous result and (49) is a rigorous
proof of the non-abelian Stokes theorem as used in Sect. 2.

Let us now substitute (50) into (44) and, taking into
account the natural two-dimensional degrees of freedom
reduction of the average (44), we have

G((x− y)) =
1

G̃(0)

∫ +∞

−∞

N2−N∏
a=1

d[Aa
1 ] d[Aa

0 ]

× exp
{

+
1
2
V
[
TrSU(N)(A2

0 +A2
1)
]

× exp
{

+
(g2S)2

2
(TrSU(N)[A0, A1])2

}
(51)

where G̃(0) is the normalization factor given explicitly by

G̃(0) =
∫ +∞

−∞

N2−N∏
a=1

d[Aa
1 ]d[Aa

0 ]

× exp
{
− 1

2
vol(Ω)[(Aa

0)2 + (Aa
1)2]
}
. (52)

By looking closely at (51) and (52), one can see that
the behavior of the Wilson phase-factor average at large
N is asymptotic to the value of the integral below

G((x− y))N�1

∼
{∫ +∞

−∞
da exp

{
− 1

2
vol(Ω)a2

}
exp
{
− (g2S)2

2
a4
}

×
(∫ +∞

−∞
da exp

{
− 1

2
vol(Ω)a2

})−1}N2−N

. (53)

By using the well-known result (see [9], p. 307,
(3).323-3) ∫ ∞

0
exp
(−β2x4 − 2γ2x2) dx

= 2− 3
2

(
γ

β

)
e

γ4

2β2 K 1
4

(
γ4

2β2

)
(54)

we obtain the closed result (at finite volume V =
vol(Ω) <∞).

G((x− y))N�1 ∼




√vol(Ω)N

2 ·
(

g2SN√
2

)

 e

+ (vol(Ω))2

32
N2

(
g2SN√

2

)2

×K 1
4

(
(vol(Ω))2N2

16g4N2S2

)

×


 √

π

2 ·
(

vol(Ω)
2

) 1
2




−1


N2−N

.

(55)

Let us now give a theoretical physicist’s argument for
the theory’s triviality at infinite volume vol(Ω) → ∞ on
the basis of the explicit representation. Let us firstly define
the limit of the infinite-volume theory by means of the
following limit

vol(Ω) = S2 (56)
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and consider the asymptotic limit of the correlation func-
tion at |x− y| → ∞ (S → ∞).

By using the standard asymptotic limit of the Bes-
sel function

lim
z→∞K 1

4
(z) ∼ e−z

√
π

2z
(57)

one obtains the result ( lim
N→∞

g2N = g2
∞ <∞) in four di-

mensions

G((x− y)) N�1
|x−y|→∞

∼ lim
S→∞

{
N

S
· eN2S4

16S2

√
16π

N2S22
e− S2N2

16

}N2−N

∼
1

|x− y|4(N2−N) . (58)

So, we can see that for N a very large parameter, there
is a fast decay of (58) without any bound on the power de-
cay law. However in the usual LSZ framework for quantum
fields, it the opposite behavior would be expected through
the lack of decay of a factor as in the two-dimensional case
(see (58) for vol(Ω) = S), meaning physically that one can
observe fermionic scattering free states at large separation.
However atN →∞, where we expect the full validity of our
analysis, one obtains [on the basis of the formal behavior
of (58)] the vanishing of the fermionic correlation function
in (43), faster than any power of |x− y| for large |x− y|.
This result shows that g2

bare may be zero from the very
beginning and strongly signalling the fact that the chiral
Thirringmodel for large number of colorsmay remain a triv-
ial quantum field theory, a result that is not fully expected
in view of previous claims on the subject that large-N re-
summations always turn non-renormalizable field theories
into non-trivial renormalizable useful ones [8]. However,
rigorous mathematical proofs are needed to establish such
an important triviality result in full [8].

Finally, and as a last remark on our (55–58), let us
point out that a mathematical rigorous sense in which
to consider these results is by taking as our continuum
spacetime Ω, a set formed of n hyper-four-dimensional
cubes of side a – the expected size of the non-perturbative
vacuum domain of our theory (see the first reference in [1]) –
and the surface S being formed, for instance, by n squares
on the Ω plane section contained on the plane µ = 0 ,
ν = 1. As a consequence of this construction, we can see
that the large behavior is given exactly by

G(na)N�1
n→∞∼




N

g2
∞ · na2

e

(N2n2a8

32.

(
g2∞na2

√
2

)2

×K 1
4

(
N2(n2a8)

16(g2∞)2 n2a4

}N2−N

∼

(
1
na4

)N2−N

∼ e−N(N−1)�g(na4)
∼

N→∞
0 . (59)

4 The loop space argument
for the Thirring model triviality

To argue one more time for the triviality phenomenon of the
SU(N) non-abelian Thirring model of Sect. 3 for finite N ,
let us consider the generating functional (27) for vanishing
fermionic sources ηa = ηa = 0, the so-called vacuum-energy
theory’s content or the theory’s partition functional

Z(0, 0) =
∫ N2−N∏

a=1

3∏
µ=0

D[Aa
µ(x)] e− 1

2

∫
Ω

d4x(Aa
µ Aa

µ)(x)

× detF [(�∂ + igγ5 �A)(�∂ + igγ5 �A)∗] . (60)

At this point of our analysis, let us write the functional
determinant of (60) as a functional on the space of closed
bosonic paths {Xµ(σ), 0 ≤ σ ≤ T, Xµ(0) = Xµ(T ) =
xµ}, namely [6] and first reference on [8].

�g detF [(�∂ + igγ5 �A)(�∂ + igγ5 �A)∗]

=
∑
Cxx

{
PSU(N) · PDirac

× exp

[
−g
∮

Cxx

Aµ(Xβ(σ)dXµ(σ)

+
i

2
[
γα, γβ

] ∮
Cxx

Fαβ(Xβ(σ))ds

]}
. (61)

The sum over the closed loops Cxy with fixed end-point
xµ is given by the proper-time bosonic path integral below

∑
Cxx

= −
∫ ∞

0

dT
T

∫
d4xµ

∫
χµ(0)=xµ=χµ(T )

DF [X(σ)]

× exp

{
− 1

2

∫ T

0
Ẋ2(σ)dσ)

}
. (62)

Note the symbols of the path ordenation P of both the
Dirac and color indices on the loop hase space factors in
the expression (61).

By using the Mandelstam area-derivative operator
δ
/
δ σγρ(X(σ)) [4], one can rewrite (61) into the suitable

form as an operation in the loop space with Dirac matrices
bordering the loop Cxx, namely:

�g detF [(�∂ + igγ5 �A)(�∂ + igγ5 �A)∗]

=
∑
Cxx

PDirac exp
{∮

Cxx

dσ
i

2
[
γα, γβ

]
(σ)

δ

δσαβ(X(σ))

× PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ)dXµ(σ))
]}

. (63)
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To show the triviality of functional fermionic determi-
nant when averaging over the (white-noise) auxiliary non-
abelian fields as in (60), we can use a cumulant expansion,
which in generic form reads

〈ef 〉Aµ = exp
{
〈f〉Aµ +

1
2

(
〈f2〉Aµ − 〈f〉2Aµ

)
+ . . .

}
.

(64)
So let us evaluate explicitly the first order cumulant

∑
Cxy

PDirac

{∮
Cxy

ds
i

2
[
γα(σ), γβ(σ)

] δ

δσαβ(X(σ))

×
〈

PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ))dXµ(σ)
]〉

Aµ

(65)

with the average 〈 〉Aµ
defined by the path integral (60).

By using the Grassmanian zero-dimensional represen-
tation to write explicitly the SU(N) path order as a Grass-
manian path integral [10]

PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ))dXµ(σ))
]

(66)

=
∫ N2−N∏

a=1

DF [θa(σ)]DF [θ∗
a(σ)](

N2−N∑
a=1

θa(0) θ∗
a(T ))

× exp

(
i

2

∫ T

0
dσ

N2−N∑
a=1

(
θa(σ)

d
dσ

θ∗
a(σ) + θ∗

a(σ)
d
dσ

θa(σ)
))

× exp

(
g

∫ T

0
dσ(Aa

µ(Xβ(σ))(θb(λa)bcθ
∗
c )(σ)dXµ(σ))

)

one can easily see that the average over the Aµ(x) fields
is straightforward and produces as a result the following
self-avoiding loop action〈

PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ))dXµ(σ))
]〉

Aµ

=
∫ N2−N∏

a=1

DF [θa(σ)]DF [θ∗
a(σ)](

N2−N∑
a=1

θa(0)θ∗
a(T ))

× exp

(
i

2

∫ T

0
dσ

×
N2−N∑

a=1

(
θa(σ)

d
dσ

θ∗
a(σ) + θ∗

a(σ)
d
dσ

θa(σ)
))

× exp

{
g2

2

∫ T

0
dσ
∫ T

0
dσ′

×
[
(θb(λa)bcθ

∗
c )(σ)(θb(λa)bcθ

∗
c )(σ′)

]

× δ(D)(Xµ(σ)−Xµ(σ′))dXµ(σ)dXµ(σ′)

}
. (67)

At this point one can use the famous probabilistic topo-
logical Parisi argument [11] to show the λϕ4 triviality at
the four-dimensional spacetime [8]: due to the fact that
the Hausdorff dimension of our Brownian loops {Xµ(σ)}
is two, and that the topological rule for a continuous man-
ifold holds true in the present situation, one obtains that,
for ambient space greater than (or equal) to four, the Haus-
dorff dimension of the closed path intersection set of the
argument of the delta function in (67) is empty. So, we
have as a consequence〈

PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ)dXµ(σ))
]〉

Aµ

= 1 .

(68)
Proceeding in an analogous way for higher-order cumu-

lants, one uses again the aforementioned Parisi topological
argument to arrive at the general results for a set of m
Brownian paths {C(�)

xx }�=1,...,m〈
m∏

�=1

[
PSU(N) exp

(
−g
∮

C
(�)
xx

Aµ(X(�)
β (σ))dX(�)

µ (σ)
)]〉

Aµ

= 1 . (69)

At this point we note that for finite Nc the following
result holds true as a consequence of (60) and (69)

Z(0, 0)

=

〈
exp

{∑
Cxx

PDirac

{∮
Cxx

dσ
i

2
[
γα, γβ

]
(σ)

δ

δσαβ(X(σ))

× PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ))dXµ(σ)
]}〉

Aµ

= exp

{∑
Cxx

PDirac

{∮
Cxx

dσ
i

2
[
γα, γβ

]
(σ)

δ

δσαβ(X(σ))

×
〈
PSU(N)

[
exp(−g

∮
Cxx

Aµ(Xβ(σ))dXµ(σ)
]〉

Aµ

+
1
2

∑
C

(1)
xx

∑
C

(2)
xx

{∮
Cxx

dσ1 i

2
[
γα, γβ

]
(σ1)

δ

δσαβ(X1(σ1))

×
∮

C
(2)
xx

i

2
[
γρ, γJ

]
(σ2)

δ

δσρJ(X2(σ2))

×
〈
PSU(N)

[
exp(−g

∮
C

(1)
xx

Aµ(X1
β(σ1))dX1

µ(σ1)

]

× PSU(N)

[
exp(−g

∮
C

(2)
xx

Aµ(X2
β(σ2))dX2

µ(σ2)

]〉
Aµ

+ . . .

}
= exp(0) = 1 = detF (�∂ �∂∗] , (70)
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which in turn leads to the Thirring model’s triviality for
spacetime RD with D ≥ 4.
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